PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in python

mpags-python.github.io

Steven Bamford
PHYS4038/MLiS

Course Introduction
Course information and materials

- Moodle page
 https://moodle.nottingham.ac.uk/course/view.php?id=95853

→ https://mpags-python.github.io

- Slides and notebooks used in lectures
- Exercises and solutions
- ‘Engage’ lecture recordings available from Moodle page
Course aims

- To give you…
 - experience of using a modern scripting language
 - introduction to all essential Python syntax
 - practical advice about scientific programming
 - knowledge of the main scientific modules for Python
 - the ability to do basic data analysis tasks in Python
 (e.g. data manipulation, plotting, …)
 - knowledge of some specific tools for scientific computing
 (e.g. signal processing, optimisation, …)
 - an overview of Python's full capabilities

- Not to…
 - teach programming in general (but I will try to help!)
 - cover every aspect of Python
Course structure

• Ten sessions, every Monday this term, in George Green A13
 • 13:00 – 14:00 — lecture / workshop
 • mix of PowerPoint and Jupyter notebooks
 • have Python running and try things out as I talk
 • 14:00 – 15:00 — examples class
 • work on exercises and examples
 • ask any questions
 • make progress on coursework
 • help with debugging, etc.
Questions

• Talk to me:
 • During teaching sessions *(preferred)*
 • Specific questions, clarifications – just ask
 • Bigger issues – wait until end of lecture / start of examples class
 • Via email: steven.bamford@nottingham.ac.uk
 • Arrange a meeting
 • email me
 • office: CAPT A112b
Your backgrounds

• Your general programming experience?
 • languages
 • level
 • projects

• Your prior Python experience?

• Any particular things you want to be covered?
Provisional outline

- **Session 1**: Introduction to Python
 - Why Python is (mostly) awesome
 - Writing and running Python
 - Language basics

- **Session 2**: Introduction to Python, continued
 - More language basics
 - Good programming practice

- **Session 3**: Staying organised
 - Managing your environment with conda and pip
 - Version control with GitHub

- **Session 4**: Numerical Python
 - Numpy
 - Using arrays wisely

- **Session 5**: Plotting with Python
 - Matplotlib (and others)

- **Session 6**: Scientific Python overview
 - Scipy and other tools
Provisional outline

• **Session 7:** Scientific Python examples
 • Filtering, interpolation, optimisation

• **Session 8:** Data handling
 • Efficiently storing and processing large amounts of data
 • PyTables, Pandas, Dask
 • Multiprocessing

• **Session 9:** Robust, fast & friendly code
 • Testing and timing
 • Wrapping external libraries and creating the fastest code
 • cython, numba, etc.
 • Web applications

• **Session 10:** Python for specialists
 • Python for astronomers
 • Astropy
 • Python for theorists
 • Symbolic algebra
 • Bayesian inference and Deep Learning in Python
 • MCMC with emcee
 • ANNs with keras
Assessment

For those taking this module for University of Nottingham credits, towards a taught Masters or Undergraduate degree:

This is a 10 credit module.

- Code development – 60%
- Presentation on development – 20%
- Final report on development – 20%

All assessed work is performed individually.

You will be given a mark and feedback on each element.
Code development

• A Python program relevant to your interests
 • put course material into practice
 • opportunity to become familiar with Python
 • get feedback on your coding

• Your code should…
 • be written as an executable module (.py file) or Jupyter notebook (.ipynb)
 • do something meaningful: analyse real data or perform a simulation
 • define at least two user functions (but typically more)
 • make use of appropriate specialist modules
 • produce at least one informative plot
 • comprise >~ 50 lines of actual code
 • excluding comments, imports and other ‘boilerplate’
 • contain no more than 1000 lines in total
 • if you have written more, please isolate an individual element
• Three stages – together 60% of module mark

1. hand-in by **1st November** – 5%
 • README describing what you intend your code to do
 • Rough outline of the code (classes, functions, snippets, comments, pseudocode)

2. hand-in by **15th November** – 15%
 • Rough version of your code, may be incomplete, have bugs, although try to make it reasonable and easy to understand!

3. hand-in by **13th December** – 40%
 • Complete working version of your code

Deadlines are 3pm on Fridays.
Presentation and report

• Develop your ability to communicate verbally and through writing:
 • scientific objectives
 • coding choices
 • tests and performance
 • results and implications
 • potential improvements

• Presentation – 20%
 • 5 – 10 minutes
 • In examples class on 25th November

• Report – 20%
 • 2 – 3 sides of A4 (~1500 words plus figures)
 • hand-in by 13th December
Feedback

• I aim to provide:

• feedback on each intermediate activity within ~ 1 week

• final feedback within ~ 2 weeks

• Code feedback will be given through GitHub
 • Introduced in Session 3

• Marks and feedback on presentation and report via Moodle
That’s it for today!

Next up (with MPAGS students):

• **Session 1**: Introduction to Python
 • Why Python is (mostly) awesome
 • Writing and running Python
 • Language basics

• **Session 2**: Introduction to Python, continued
 • More language basics
 • Good programming practice