PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in

Python

mpags-python.github.io

Steven Bamford

University of Nottingham
An introduction to scientific programming with Python

Session 10:
Robust, fast & friendly code
Outline

• Testing for robust code
• Optimising your code
• Squeezing out extra speed
• Graphical interfaces
Writing robust code
Tests

• **Unit tests**
 • test individual units of code
 • specific units
 • e.g. a single function or interaction between functions
 • tested as generally as possible

• **Functional tests**
 • test the whole programme under a variety of inputs

• **Regression tests**
 • check for inconsistent behaviour between consecutive versions
 • detect new bugs, ensure old bugs do not reoccur
Main testing frameworks

- **unittest** is the main Python module
- **doctest** enables tests in documentation strings
- **pytest** is the most popular third-party module
 - `conda install pytest`
 - nicely automates testing, and preferred by astropy
 - interoperable with other frameworks
 - basically just name any tests `test_*`
 - files, functions, methods, classes (Test…)
- astropy has detailed testing guidelines:
Tests

def func(x):
 """Add two to the argument."""
 return x + 1

def test_answer():
 """Check the return value of func() for an example argument."""
 assert func(3) == 5
$ pytest mycode.py

========== test session starts ================
platform darwin -- Python 3.7.4, pytest-5.3.1
rootdir: /Users/spb/Work/teaching/mpags_python/test_demo
collected 1 item

mycode.py F
[100%]

========== FAILURES ==========================
___________ test_answer ____________________
def test_answer():
 """Check the return value of func() for an example argument.""
 > assert func(3) == 5
 E assert 4 == 5
 E + where 4 = func(3)

mycode.py:7: AssertionError

========== 1 failed in 0.04s ===============
Tests

- Online testing (continuous integration) services
 - GitHub Actions
- Also, CircleCI, Jenkins, Travis CI, Azure Pipelines
- Test coverage reports
 - Coveralls: https://coveralls.io
Optimising your code
Testing performance

timeit – use in interpreter, script or command line

```python
python -m timeit [-n N] [-r N] [-s S] [statement ...]
```

Options:
- `-s S`, `--setup=S`
 - statement to be executed once initially (default pass)
- `-n N`, `--number=N`
 - how many times to execute 'statement' (default: take \(\sim 0.2\) sec total)
- `-r N`, `--repeat=N`
 - how many times to repeat the timer (default 3)

IPython/Jupyter magic version

```bash
%timeit    # one line
%%timeit   # whole notebook cell
```
Testing performance

fastest way to calculate x**5?

```bash
$ python -m timeit -s 'from math import pow; x = 1.23' 'x*x*x*x*x'
10000000 loops, best of 3: 0.161 usec per loop

$ python -m timeit -s 'from math import pow; x = 1.23' 'x**5'
10000000 loops, best of 3: 0.111 usec per loop

$ python -m timeit -s 'from math import pow; x = 1.23' 'pow(x, 5)'
10000000 loops, best of 3: 0.184 usec per loop
```
Profiling

- Understand which parts of your code limit its execution time
 - print summary to screen, or save file for detailed analysis

From shell

```bash
$ python -m cProfile -o program.prof my_program.py
```

From IPython/Jupyter

```ipython
%prun -D program.prof my_function()

%%prun # profile an entire notebook cell
```

Lots of functionality… see docs
Profiling


```
$ conda install snakeviz
OR
$ pip install snakeviz
```

In IPython/Jupyter:

```
%load_ext snakeviz
%snakeviz my_function()
%%snakeviz  # profile entire cell
```
Benchmarking

Regular timing tests to check for performance regression

• pytest-benchmark
• airspeed velocity
Squeezing out extra speed
Numba

- JIT: just in time compilation of Python functions
- Compilation for both CPU and GPU hardware

```python
from numba import jit

@jit
def primes(kmax):
    # same code as original pure python version
    ...
    return p
```

```
$ python -m timeit -s 'import nprimes as p' 'p.primes(100)'
1000 loops, best of 3: 44.2 usec per loop
```

30x speedup
Numba

- Easy, automatic parallelization

```python
from numba import vectorize

@jit(parallel=True)
def sum(a, b):
    return a + b
```

- Create your own optimised numpy 'ufuncs'

```python
from numba import vectorize, float32

@vectorize(['float32(float32, float32)'], target='parallel')
def sum(a, b):
    return a + b

@vectorize(['float32(float32, float32)'], target='gpu')
def sum(a, b):
    return a + b
```
Cython is used for compiling Python-like code to machine-code

- supports a big subset of the Python language
- conditions and loops run 2-8x faster, overall 30% faster for plain Python code
- add types for speedups (hundreds of times)
- easily use native libraries (C/C++/Fortran) directly

- Cython code is turned into C code
 - uses the CPython API and runtime

- Coding in Cython is like coding in Python and C at the same time!

Some material borrowed from Dag Sverre Seljebotn (University of Oslo) EuroSciPy 2010 presentation
Cython

Use cases:

• Performance-critical code
 • which does not translate to array-based approach (numpy / pytables)
 • existing Python code → optimise critical parts

• Wrapping existing C/C++ libraries
 • particularly higher-level Pythonised wrapper
 • for one-to-one wrapping other tools might be better suited
Cython code must be compiled (but this can be automated)

Two stages:

• A .pyx file is compiled by Cython to a .c file, containing the code of a Python extension module

• The .c file is compiled by a C compiler
 • Generated C code can be built without Cython installed
 • Cython is a developer dependency, not a build-time dependency
 • The result is a .so file (or .pyd on Windows) which can be imported directly into a Python session
Ways of building Cython code:

• Run cython command-line utility and compile the resulting C file
 • use favourite build tool
 • for cross-system operation you need to query Python for the C build options to use

• Use pyximport to importing Cython .pyx files as if they were .py files; building on the fly (recommended to start).
 • things get complicated if you must link to native libraries
 • larger projects tend to need a build phase anyway

• Write a distutils setup.py
 • standard way of distributing, building and installing Python modules
Cython supports most of normal Python

Most standard Python code can be used directly with Cython
- typical speedups of (very roughly) a factor of two
- should not ever slow down code – safe to try
- name file .pyx or use pyimport = True

```python
>>> import pyximport
>>> pyximport.install()
>>> import mypyxmodule  # converts and compiles on the fly

>>> pyximport.install(pyimport=True)
>>> import mypymodule  # converts and compiles on the fly
    # should fall back to Python if fails
```
Cython

- Big speedup from defining types of key variables
- Use native C-types (int, double, char *, etc.)
- Use Python C-types (Py_int_t, Py_float_t, etc.)
- Use `cdef` to declare variable types
- Also use `cdef` to declare C-only functions (with return type)
 - can also use `cpdef` to declare functions which are automatically treated as C or Python depending on usage
- Don't forget function arguments (but note `cdef` not used here)
Cython – primes example

- Efficient algorithm to find first \(N \) prime numbers

```python
def primes(kmax):
    p = []
    k = 0
    n = 2
    while k < kmax:
        i = 0
        while i < k and n % p[i] != 0:
            i = i + 1
        if i == k:
            k = k + 1
            p.append(n)
        n = n + 1
    return p
```

```bash
$ python -m timeit -s 'import primes as p' 'p.primes(100)'
1000 loops, best of 3: 1.35 msec per loop
```
Cython – primes example

def primes(kmax):
 p = []
 k = 0
 n = 2
 while k < kmax:
 i = 0
 while i < k and n % p[i] != 0:
 i = i + 1
 if i == k:
 k = k + 1
 p.append(n)
 n = n + 1
 return p

$ python -m timeit -s 'import pyximport;
 pyximport.install(); import cprimes as p' 'p.primes(100)'
1000 loops, best of 3: 731 usec per loop

1.8x speedup
def primes(int kmax):
 # declare types of parameters
 cdef int n, k, i
 # declare types of variables
 cdef int p[1000]
 # including arrays
 result = []
 # can still use normal Python types
 if kmax > 1000:
 # in this case need to hardcode limit
 kmax = 1000
 k = 0
 n = 2
 while k < kmax:
 i = 0
 while i < k and n % p[i] != 0:
 i = i + 1
 if i == k:
 p[k] = n
 k = k + 1
 result.append(n)
 n = n + 1
 return result
 # return Python object

40.8 usec per loop
33x speedup

c contains only C-code
Cython and Numpy

• Cython provides a way to quickly access Numpy arrays with specified types and dimensionality
 → for implementing fast specific algorithms

• Can be useful, but often using functions provided by numpy, scipy, numexpr or pytables will be easier and faster
Graphical interfaces
GUIs

- Give your scientific code a friendly face!
 - easy configuration
 - monitor progress
 - particularly for public code, cloud computing, HPC

- Many modules to construct GUIs in Python…
 - Tkinter – built-in
 - Qt – C++
 - wx – C++
 - Remi – browser based
 - PySimpleGUI – one interface, multiple GUI frameworks
 - Kivy – modern and cross-platform
Example using **wxpython**

www.wxpython.org

https://github.com/bamford/control/
GUIs

For simple GUI, especially if output is a plot…

matplotlib widgets are very useful

• layout controls on a figure canvas

• functionality implemented using callback functions:
 • every time a control is activated it will call the function
 • function then examines the event and takes action

In Jupyter notebooks…

IPython widgets provide a quick graphical interface
Python web frameworks

Most popular…

Flask

light and flexible, more explicit, good for smaller projects

Django

full-featured, automated, good for getting big projects going quickly

but also…

Pyramid, web2py, ...

* An (unscientific) example
An introduction to scientific programming with

The End