PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in

Python™

mpags-python.github.io

Steven Bamford

University of Nottingham
An introduction to scientific programming with Python

Session 6:
Data handling
Databases

• Python has tools for accessing most (all?) databases
 • e.g. MySQL, SQLite, MongoDB, Postgres, …

• Allow one to work with huge datasets
• Data can be at remote locations
• Robust and fast

• May require knowledge of DB-specific language
• But often provide Pythonic interface
Databases

- SQLite
 - Lightweight
 - No server
 - Just uses files (convenient, but less powerful)
 - Standard python module: sqlite3
Databases

- MariaDB (MySQL)
 - Widely used
 - Need MySQL server installed
 - Official: mariadb
 - SQLAlchemy, mysqlclient, pymysql, MySQLdb
Databases

- MongoDB
 - NoSQL database
 - Documents rather than tables
 - Need Mongo database server
 - Official: pymongo
Databases

- Python has tools for accessing most (all?) databases
 - e.g. MySQL, SQLite, MongoDB, Postgres, …

- Allow one to work with huge datasets
- Data can be at remote locations
- Fast random read and write
- Atomic transactions
- Concurrent connections
Databases

- **DB pros and cons**
 - Allow one to work with huge datasets
 - Data can be at remote locations
 - Fast random read and write
 - Concurrent, atomic transactions

- However, most databases are designed for webserver use
 - typically not optimised for data analysis
 - write once, multiple sequential reads
• Python Data Analysis Library
 • http://pandas.pydata.org

• Easy-to-use data structures
 • DataFrame (more friendly recarray)
 • Handles missing data (more friendly masked array)
 • read and write various data formats
 • data-alignment
 • tries to be helpful, though not always intuitive
 • Easy to combine data tables
 • Surprisingly fast!

Notebook demo…
Arrays implement the Numpy API
```python
import dask.array as da
x = da.random.random(size=(10000, 10000),
                      chunks=(1000, 1000))
x + x.T - x.mean(axis=0)
```

Dataframes implement the Pandas API
```python
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*.csv')
df.groupby(df.account_id).balance.sum()
```

Dask-ML implements the Scikit-Learn API
```python
from dask_ml.linear_model \n    import logisticRegression
lr = LogisticRegression()
lr.fit(train, test)
```
PySpark

• typically for dealing with very large datasets
• distributed computing on a cluster
• need to setup infrastructure
PyTables / h5py

- http://pytables.github.io
- For creating, storing and analysing datasets
 - from simple, small tables to complex, huge datasets
 - standard HDF5 file format
 - incredibly fast – even faster with indexing
 - uses on the fly block compression
 - designed for modern systems
 - fast multi-code CPU; large, slow memory
- "in-kernel" – data and algorithm are sent to CPU in optimal way
- "out-of-core" – avoids loading whole dataset into memory
PyTables / h5py

- Can store many things in one HDF5 file (like FITS)
- Tree structure
- Everything in a group (starting with root group, '/')
- Data stored in leaves
- Arrays (e.g. n-dimensional images)

```python
>>> from tables import *

>>> h5file = openFile("test.h5", mode = "w")
>>> x = h5file.createArray("/", "x", arange(1000))
>>> y = h5file.createArray("/", "y", sqrt(arange(1000)))
>>> h5file.close()
```
PyTables

• Tables (columns with different formats) – *better to use Pandas!*
 • described by a class
 • accessed by a row iterator

```python
>>> class MyTable(IsDescription):
    z = Float32Col()

>>> table = h5file.createTable("/", "mytable", MyTable)

>>> row = table.row

>>> for i in xrange(1000):
    row["z"] = i**(3.0/2.0)
    row.append()

>>> table.flush()

>>> z = table.cols.z
```
• **Expr** enables in-kernel & out-of-core operations

```python
>>> r = h5file.createArray("/", "r", np.zeros(1000))
>>> xyz = Expr("x*y*z")
>>> xyz.setOutput(r)
>>> xyz.eval()
/r (Array(1000,)) '
    atom := Float64Atom(shape=(), dflt=0.0)
    maindim := 0
    flavor := 'numpy'
    byteorder := 'little'
    chunkshape := None
>>> r.read(0, 10)
array([[  0.        ,    1.        ,    7.99999986,   26.9999989 ,
         64.        ,  124.99999917,  216.00000085,  343.00001259,
        511.99999124,  729.        ]])
```
• **where** enables in-kernel selections

```python
>>> r_bigish = [ row['z'] for row in table.where('(z > 1000) & (z <= 2000)')

>>> for big in table.where('z > 10000;'):
...     print('A big z is {}'.format(big['z']))
```

• There is also a **where** in **Expr**
Multiprocessing

- Python includes modules for writing "parallel" programs:
 - threaded – limited by the Global Interpreter Lock
 - multiprocessing – generally more useful

```python
from multiprocessing import Pool

def f(x):
    return x*x

pool = Pool(processes=4)  # start 4 worker processes

z = range(10)
print pool.map(f, z)  # apply f to each element of z in parallel
```
from multiprocessing import Process
from time import sleep

def f(name):
 print('Hello {}, I am going to sleep now'.format(name))
sleep(3)
print('OK, finished sleeping')

if __name__ == '__main__':
 p = Process(target=f, args=(lock, 'Steven'))
p.start() # start additional process
sleep(1) # carry on doing stuff
print 'Wow, how lazy is that function!'
p.join() # wait for process to complete

$ python thinking.py
Hello Steven, I am going to sleep now
Wow, how lazy is that function!
OK, finished sleeping

(Really, should use a lock to avoid writing output to screen at same time)
PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in

mpags-python.github.io

Steven Bamford

University of Nottingham
Coursework submission

- **Ongoing work**
 - preliminary version
 - incomplete / with bugs
 - roughly working
 - understandable
 - problems to be solved
 - questions

- Submission and feedback via your GitHub repository

- Mandatory for MLiS, optional for MPAGS

- **Create a branch called sub2**
Any questions?

- ask on the Slack channel (@Steven Bamford)
- email steven.bamford@nottingham.ac.uk
- ask in the next synchronous session