PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in python

mpags-python.github.io

Steven Bamford
PHYS4038/MLiS

Course Introduction
Course information and materials

• Moodle page
 https://moodle.nottingham.ac.uk/course/view.php?id=106050

 ➔ https://mpags-python.github.io

• Slides and notebooks used in lectures

• Exercises and solutions

• ‘Engage’ lecture recordings available from Moodle page
Course aims

• To give you…
 • experience of using a modern scripting language
 • introduction to all essential Python syntax
 • practical advice about scientific programming
 • knowledge of the main scientific modules for Python
 • the ability to do basic data analysis tasks in Python
 (e.g. data manipulation, plotting, …)
 • knowledge of some specific tools for scientific computing
 (e.g. signal processing, optimisation, …)
 • an overview of Python's full capabilities

• Not to…
 • teach programming in general (but I will try to help!)
 • cover every aspect of Python
Course structure

• Ten weeks
• About one hour of recorded lecture videos each week
• Watch at your own pace, try out examples
• Work on exercises and coursework
• Synchronous online session via MS Teams – Fridays at 10am
 • Ask any questions
 • Exercise solutions
 • Help with debugging
• Talk to me:
 • During synchronous Teams sessions (preferred)
 • Via Slack channel (you will receive an invitation)
 • Email: steven.bamford@nottingham.ac.uk
Outline

- **Session 1**: Introduction to Python
 - Why Python is (mostly) awesome
 - Writing and running Python
 - Language basics

- **Session 2**: Introduction to Python, continued
 - More language basics
 - Good programming practice

- **Session 3**: Staying organised
 - Managing your environment with conda and pip
 - Version control with GitHub

- **Session 4**: Numerical Python and Plotting
 - Numpy
 - Using arrays wisely
 - Matplotlib (and others)

- **Session 5**: Scientific Python
 - Scipy and other tools
 - Filtering, interpolation, optimisation
Outline

- **Session 6**: Data handling
 - Efficiently storing and processing large amounts of data
 - PyTables, Pandas, Dask
 - Multiprocessing

- **Session 7**: Python for specialists
 - Python for astronomers
 - Astropy
 - Python for theorists
 - Symbolic algebra

- **Session 8**: MSc presentations (no lecture / no PhD students)

- **Session 9**: Bayesian inference and Deep Learning in Python
 - MCMC with emcee
 - ANNs with keras

- **Session 10**: Robust, fast & friendly code
 - Testing and timing
 - Wrapping external libraries and creating the fastest code
 - cython, numba, etc.
 - Web applications
Assessment

For those taking this module for University of Nottingham credits, towards a taught Masters or Undergraduate degree:

This is a 10 credit module.

- Code development – 60%
- Presentation on development – 20%
- Final report on development – 20%

All assessed work is performed individually.

You will be given a mark and feedback on each element.
Code development

- A Python program relevant to your interests
 - put course material into practice
 - opportunity to become familiar with Python
 - get feedback on your coding

- Your code should...
 - be written as an executable module (.py file) or Jupyter notebook (.ipynb)
 - do something meaningful: analyse real data or perform a simulation
 - define at least two user functions (but typically more)
 - make use of appropriate specialist modules
 - produce at least one informative plot
 - comprise >~ 50 lines of actual code
 - excluding comments, imports and other ‘boilerplate’
 - contain no more than 1000 lines in total
 - if you have written more, please isolate an individual element
Code development

• Three stages – together 60% of module mark

1. hand-in by **28th October** – 5%
 • README describing what you intend your code to do
 • Rough outline of the code (classes, functions, snippets, comments, pseudocode)

2. hand-in by **18th November** – 15%
 • Rough version of your code, may be incomplete, have bugs, although try to make it reasonable and easy to understand!

3. hand-in by **16th December** – 40%
 • Complete working version of your code

Deadlines are 3pm on Wednesdays.
Presentation and report

• Develop your ability to communicate verbally and through writing:
 • scientific objectives
 • coding choices
 • tests and performance
 • results and implications
 • potential improvements

• Presentation – 20%
 • 5 – 10 minutes
 • In synchronous session in Week 10 (late November)

• Report – 20%
 • 2 – 3 sides of A4 (~1500 words plus figures)
 • hand-in by 16th December
Feedback

- I aim to provide:
 - feedback on each intermediate activity within ~ 1 week
 - final feedback within ~ 2 working weeks

- Code feedback will be given through GitHub
 - Introduced in Session 3

- Marks and feedback on presentation and report via Moodle
That’s it for today!

Next up:

• **Synchronous intro session**
 • Friday 2nd October

• **Session 1**: Introduction to Python
 • Why Python is (mostly) awesome
 • Writing and running Python
 • Language basics

• **Session 2**: Introduction to Python, continued
 • More language basics
 • Good programming practice