
Steven Bamford

PHYS4038/MLiS and AS1/MPAGS

Scientific Programming in

mpags-python.github.io

Session 1:
Introduction to Python

An introduction to scientific programming with

Session 1.1:
Choosing and using Python

An introduction to scientific programming with

Why use a high-level language?

• Modern high-level languages:
• Python, R, JS, Julia, Ruby, IDL, Perl, …

• Interactive interpreter

• Ease of use

• Speed of development

• Readability

• Writing code (‘scripting’) better than a one-off analysis

• Permanent record

• Repeatability

Why not?

• If you want fastest possible performance
• at the expense of everything else

• You need highly parallel code

• Need low-level control

• Unless you are working on a supercomputer or developing operating
systems components, these probably don't apply to you
• Even then, high-level language could be useful in places (glue, tests, etc.)

Why Python is awesome

• Designed to be easy to learn and use – clear syntax

• Well documented

• Powerful, flexible, fully-featured programming language

• Multi-paradigm

• Comprehensive scientific and data analysis tools

• Fast, efficient

• Interpreter, introspection

• Runs everywhere, completely free

• Large community

Why learn Python?

• Get more science done with less stress

• Widely used throughout academia and industry
• NASA, AstraZeneca, Google, Industrial Light & Magic, Philips,…
• data science, machine learning, web services, engineering, science,

finance, games, education, data management, …

• Python programmers in demand

• Easy introduction to general programming concepts

Why not?

• Existing code for your project in another language, but still…

Running Python

• Command line
• Basic Python interpreter
• Terminal / Anaconda prompt
• Just type python
• To exit:

• Ctrl-D
• exit()

Running Python

• Command line
• IPython – enhanced Interactive Python
• Terminal / Anaconda prompt : just type ipython
• Or use launcher
• To exit:

• Ctrl-D
• exit()

Writing Python

• Editors

• Choose wisely
• you will use it a lot
• it will save you a lot of time in the long run
• worth putting in some effort to learn features and shortcuts
• cross-platform is an advantage

• Old-school:
• Emacs, Vim

• New-school:
• Atom, TextMate, Sublime Text, …
• tend to be extensible, lots of functionality, customisable

• But perhaps better to use…

Writing and running Python

• Integrated Development Environments (IDEs)

• Editor, interpreter, inspector, graphical output viewer all-in-one

• Tools for organizing, debugging, inline documentation, etc.

• Spyder
• Python-only
• Included with Anaconda
• Terminal / Anaconda prompt:
• just type spyder

• Or use launcher

Writing and running Python

• Integrated Development Environments (IDEs)

• Editor, interpreter, inspector, graphical output viewer all-in-one

• Tools for organizing, debugging, inline documentation, etc.

• PyCharm
• Python-specific, but similar versions for other languages
• Professional version free for academic use
• www.jetbrains.com/pycharm/
• www.jetbrains.com/education/

Writing and running Python

• Integrated Development Environments (IDEs)

• Editor, interpreter, inspector, graphical output viewer all-in-one

• Tools for organizing, debugging, inline documentation, etc.

• Visual Studio Code
• Multi-language
• Free
• code.visualstudio.com

Writing and running Python

• Jupyter

• Mathematica/Maple-style notebooks
• Store code and output together in one file
• Blend interactive prompt and scripts
• Good for demonstrations / trying things out
• Keep reproducible record of interactive analyses

• To start, in terminal / Anaconda prompt: jupyter notebook
• Or use launcher
• Opens notebook interface in web browser

• Can easily display online in GitHub or with nbviewer.ipython.org
• Easily converted to python/html/slides, etc.

Writing and running Python

• Jupyter Lab

• All-in-one: a browser-based IDE
• Terminal / Anaconda prompt: jupyter lab

• Or use launcher

Writing and running Python

• Python online

• In-browser IDE / notebooks with free (limited) cloud-based compute

• CoCalc
• cocalc.com
• Real-time collaborative coding

• repl.it
• Real-time collaborative coding

• GitHub Codespaces (Microsoft Visual Studio Code)
• github.com/features/codespaces
• Real-time collaborative coding

• Google Colaboratory
• colab.research.google.com
• Free access to GPU and TPUs

Basics

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2.0 # and a comment on the same line as code
4.0
>>> (50-5*6)/4
5
>>> width = 20 # assignment, no type declaration
>>> height = 5*9
>>> width * height
900
>>> x = y = z = 0 # zero x, y and z
>>> y
0
>>> n
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

Scripts

2+2
This is a comment
2+2
2+2.0 # and a comment on the same line as code
(50-5*6)/4
width = 20 # assignment, no type declaration
height = 5*9
width * height
x = y = z = 0 # zero x, y and z
print(y)

• Better to write code in a text editor / notebook

• Save in a file and execute…
from command line: $ python test.py
from the IPython prompt: In [1]: %run test.py
from a Jupyter cell: shift / ctrl / alt + enter
from an IDE: Click the run icon / appropriate shortcut

Scripts

2+2
This is a comment
2+2
2+2.0 # and a comment on the same line as code
(50-5*6)/4
width = 20 # assignment, no type declaration
height = 5*9
width * height
x = y = z = 0 # zero x, y and z
print(y)

• Better to write code in a text editor / notebook

• Save and use in future sessions / code (>>> import test)

• more later…

• Create executable files ($./test.py)

• more later…

Session 1.2:
Language basics

An introduction to scientific programming with

Numbers

>>> 10 + 3
13
>>> 10 - 3
7
>>> 10 * 3
30
>>> 10 / 3
3 OR 3.3333333333333335
>>> 10 // 3
3
>>> 10 % 3
1
>>> 10**3
1000
>>> 10 + 3 * 5 # *,/ then +,-
25
>>> (10 + 3) * 5
65
>>> -1**2 # Note: -(1**2)
-1

>>> 10.0 + 3.0
13.0
>>> 10.0 - 3.0
7.0
>>> 10.0 * 3
30.0
>>> 10.0 / 3
3.3333333333333335
>>> 10.0 // 3
3.0
>>> 10.0 % 3.0
1.0
>>> 10.0**3
1000.0

>>> 4.2 + 3.14
7.3399999999999999
>>> 4.2 * 3.14
13.188000000000001

Numbers

Augmented assignment:
>>> a = 20
>>> a += 8
>>> a
28
>>> a /= 8.0
>>> a
3.5

Functions:
>>> abs(-5.2)
5.2
>>> from math import sqrt
>>> sqrt(25)
5.0

Comparisons:
>>> 5 * 2 == 4 + 6
True
>>> 0.12 * 2 == 0.1 + 0.14
False
>>> a = 0.12 * 2; b = 0.1 + 0.14
>>> eps = 0.0001
>>> (a - eps < b) and (b < a + eps)
True

Strings

>>> 'spam and eggs'
'spam and eggs'
>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> hello = 'Greetings!'
>>> hello
'Greetings!'
>>> print(hello)
Greetings!
>>> print(hello + ' How do you do?')
Greetings! How do you do?
>>> print(hello, 'How do you do?')
Greetings! How do you do?
>>> howdo = 'How do you do?'
>>> print(hello+' '+howdo)
Greetings! How do you do?

String formatting for output

>>> name = 'Steven'; day = 'Wednesday'
>>> print('Hello {}. It is {}.'.format(name, day))
Hello Steven. It is Wednesday.

>>> # Same effect:
>>> print('Hello {1}. It is {0}'.format(day, name))
>>> print('Hello {n}. It is {d}'.format(d=day, n=name))

>>> d = {'Bob': 1.87, 'Fred': 1.768}
>>> for name, height in d.items():
... print('{who} is {height:.2f}m tall'.format(who=name,
... height=height))
...
Bob is 1.87m tall
Fred is 1.77m tall

>>> # older alternative uses '%'
>>> for name, height in d.items():
... print('%s is %.2f metres tall'%(name, height))

String formatting for output

>>> d = {'Bob': 1.87, 'Fred': 1.768}
>>> for name, height in d.items():
... print('{who} is {height:.2f}m tall'.format(who=name,
... height=height))

>>> # f-strings (Python 3.6+) – more compact syntax
>>> for name, height in d.items():
... print(f'{name} is {height:.2f}m tall’

>>> # older alternative uses '%'
>>> for name, height in d.items():
... print('%s is %.2f metres tall'%(name, height))

Containers

Lists:
>>> a = [1, 2, 4, 8, 16] # list of ints
>>> c = [4, 'candles', 4.0, 'handles'] # can mix types
>>> c[1]
'candles'
>>> c[2] = 'fork'
>>> c[-1] # negative indices count from end
'handles’

>>> c[1:3] # slicing
['candles', 'fork']
>>> c[2:] # omitting defaults to start or end
['fork', 'handles']
>>> c[0:4:2] # variable stride (could just write c[::2])
[4, 'fork’]

>>> len(a)
5

Containers

Lists:
>>> a + c # concatenate
[1, 2, 4, 8, 16, 4, 'candles', 'knife', 'handles’]

>>> a.append(32)
>>> a
[1, 2, 4, 8, 16, 32]

>>> a.extend(c)
>>> a
[1, 2, 4, 8, 16, 4, 'candles', 'knife', 'handles’]

Containers

Tuples:
>>> q = (1, 2, 4, 8, 16) # tuple of ints
>>> r = (4, 'candles', 4.0, 'handles') # can mix types
>>> s = ('lonely',) # singleton
>>> t = () # empty
>>> r[1]
'candles'
>>> r[2] = 'knife' # cannot change tuples
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

>>> u = 3, 2, 1 # parentheses not necessary

>>> v, w = 'this', 'that'
>>> v
'this'
>>> w
'that'

Containers

Dictionaries:
>>> a = {'eyecolour': 'blue', 'height': 152.0,

42: 'the answer'}
>>> a['age'] = 28
>>> a
{42: 'the answer', 'age': 28, 'eyecolour': 'blue', 'height': 152.0}

>>> del(a['height'])
>>> a
{42: 'the answer', 'age': 28, 'eyecolour': 'blue'}

>>> b = {}
>>> b['hello'] = 'Hi!'

>>> a.keys()
[42, 'age', 'eyecolour']
>>> a.values()
['the answer', 28, 'blue']

Conditionals

>>> a = 4; b = 3
>>> if a > b:
... result = 'bigger'
... c = a - b
...
>>> print(result, c)
bigger 1

>>> a = 1; b = 3
>>> if a > b:
... result = 'bigger'
... elif a == b:
... result = 'same'
... else: # i.e. a < b
... result = 'smaller'
...
>>> print(result)
smaller

>>> if a < b: print 'ok'
ok

• Indentation is important!
• be consistent
• use four spaces
• do not use (real) tabs
• any decent editor will

handle this for you (try
tab / shift-tab)

• Colon always indicates the
start of an indented block

• Block closed by de-indent

Conditionals

>>> a = 4; b = 3
>>> if a > b:
... result = 'bigger'
... c = a - b
...
>>> print(result, c)
bigger 1

>>> a = 1; b = 3
>>> if a > b:
... result = 'bigger'
... elif a == b:
... result = 'same'
... else: # i.e. a < b
... result = 'smaller'
...
>>> print(result)
smaller

>>> if a < b: print 'ok'
ok

Comparison operators:
== !=
> <
>= <=
is is not
in not in

Boolean operators:
and
or
not

Conditionals

>>> if 'Steven' in ['Bob', 'Amy', 'Steven', 'Fred']:
... print 'Here!'
...
Here!

>>> if 'Carol' not in ['Bob', 'Amy', 'Steven', 'Fred']:
... print 'Away!'
...
Away!

>>> test = a == b
>>> if test: print 'Equal'
'Equal'

Loops

>>> a = b = 0
>>> while a < 10:
... a += 3
... print(a)
...
3
6
9
12

>>> while True:
... b += 3
... if b >= 10: break
... print(b)
3
6
9

>>> for i in [2, 5, 3]:
... print(i**2)
4
25
9

>>> for j in range(5): print(j)
0
1
2
3
4

>>> range(3, 10, 2)
range(3, 10, 2)

>>> list(range(3, 10, 2))
[3,5,7,9]

Loops

>>> d = {'this': 2, 'that': 7}

>>> for k, v in d.items():

... print(f'{k} is {v}')

this is 2

that is 7

>>> numbers = ['none', 'one', 'two', 'lots']

>>> for i, j in enumerate(numbers):

... print(f'{i}: {j}')

0: none

1: one

2: two

3: lots

Functions

>>> def my_func(x, y=0.0, z=1.0):
... a = x + y
... b = a * z
... return b
...

>>> my_func(1.0, 3.0, 2.0)
8.0
>>> my_func(1.0, 3.0)
4.0
>>> my_func(1.0, y=3.0)
4.0
>>> my_func(5.0)
5.0
>>> my_func(2.0, z=3.0)
6.0
>>> my_func(x=2.0, z=3.0)
6.0

Methods

>>> a = [2, 5, 3, 6, 5]
>>> a.sort()
>>> print(a)
[2, 3, 5, 5, 6]
>>> a.count(5)
2
>>> a.reverse()
>>> print(a)
[6, 5, 5, 3, 2]

>>> d = {'black': 100, 'grey': 50, 'white': 0}
>>> d.values()
[0, 50, 100]

>>> s = '-'.join(('2009', '07', '07'))
>>> print(s)
2009-07-07

>>> a.__contains__(3) # leading underscores indicate
True # not intended for general use

Help

>>> help(math)

>>> help(math.cos)

>>> a = [1, 2, 3]
>>> help(a)

• Powerful help tools (especially in IDEs)

• Most objects, functions, modules, … can be inspected

• If in doubt, hit 'tab'
• If impatient, hit 'tab'

In [1]: math.cos?
In [2]: a?

In IPython:

(ignore things starting with _ _)

Lots of support online

• python.org/doc
• Language documentation

• Library documentation

• Beginner's Guide and Tutorials

• ipython.org/documentation.html

• www.codecademy.com/en/tracks/python

• google.com

• stackoverflow.com

• etc. …

That’s it for today!

Next up:

• Session 2: Introduction to Python, continued
• More language basics
• Good programming practice

• Session 3: Staying organised
• Managing your environment with conda and pip
• Version control with GitHub

