
Steven Bamford

PHYS4038/MLiS and AS1/MPAGS

Scientific Programming in

mpags-python.github.io

Session 10:
Robust, fast & friendly code

An introduction to scientific programming with

Outline

• Testing for robust code

• Optimising your code

• Squeezing out extra speed

• Graphical interfaces

Writing robust code

Tests

• Unit tests

• test individual units of code

• specific units

• e.g. a single function or interaction between functions

• tested as generally as possible

• Functional tests

• test the whole programme under a variety of inputs

• Regression tests

• check for inconsistent behaviour between consecutive versions

• detect new bugs, ensure old bugs do not reoccur

Tests

• Main testing frameworks

• unittest is the main Python module

• doctest enables tests in documentation strings

• pytest is the most popular third-party module

• conda install pytest

• nicely automates testing, and preferred by astropy

• interoperable with other frameworks

• basically just name any tests test_*

• files, functions, methods, classes (Test…)

• astropy has detailed testing guidelines:

• http://docs.astropy.org/en/stable/development/testguide.html

http://docs.astropy.org/en/stable/development/testguide.html

Tests

def func(x):
"""Add two to the argument."""
return x + 1

def test_answer():
"""Check the return value of func() for an example argument."""
assert func(3) == 5

mycode.py

Tests

$ pytest mycode.py
============ test session starts ==========================
platform darwin -- Python 3.7.4, pytest-5.3.1
rootdir: /Users/spb/Work/teaching/mpags_python/test_demo
collected 1 item
mycode.py F

[100%]
============ FAILURES =====================================
____________ test_answer __________________________________

def test_answer():
"""Check the return value of func() for an example

argument."""
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

mycode.py:7: AssertionError
============ 1 failed in 0.04s ===============================

Tests

• Online testing (continuous integration) services

• GitHub Actions

• Also, CircleCI, Jenkins, Travis CI, Azure Pipelines

• Test coverage reports

• Coveralls: https://coveralls.io

https://docs.github.com/en/free-pro-team@latest/actions/guides/about-continuous-integration
https://coveralls.io

Optimising your
code

Testing performance

timeit – use in interpreter, script or command line

Options:

-s S, --setup=S

statement to be executed once initially (default pass)

-n N, --number=N

how many times to execute 'statement' (default: take ~0.2 sec total)

-r N, --repeat=N

how many times to repeat the timer (default 3)

IPython/Jupyter magic version

python -m timeit [-n N] [-r N] [-s S] [statement ...]

%timeit # one line
%%timeit # whole notebook cell

Testing performance

fastest way to calculate x**5?

$ python -m timeit -s 'from math import pow; x = 1.23' 'x*x*x*x*x'

10000000 loops, best of 3: 0.161 usec per loop

$ python -m timeit -s 'from math import pow; x = 1.23' 'x**5'

10000000 loops, best of 3: 0.111 usec per loop

$ python -m timeit -s 'from math import pow; x = 1.23' 'pow(x, 5)'

1000000 loops, best of 3: 0.184 usec per loop

Profiling

• Understand which parts of your code limit its execution time

• print summary to screen, or save file for detailed analysis

From shell

From IPython/Jupyter

Lots of functionality… see docs

$ python -m cProfile –o program.prof my_program.py

%prun -D program.prof my_function()

%%prun # profile an entire notebook cell

Profiling

Nice visualisation with snakeviz – http://jiffyclub.github.io/snakeviz/

In IPython/Jupyter:

$ conda install snakeviz

OR

$ pip install snakeviz

%load_ext snakeviz

%snakeviz my_function()

%%snakeviz # profile entire cell

http://jiffyclub.github.io/snakeviz/

Benchmarking

Regular timing tests to check for performance regression

• pytest-benchmark

• airspeed velocity

Squeezing out extra speed

Numba

from numba import jit

@jit
def primes(kmax):

same code as original pure python version
...
return p

$ python -m timeit -s 'import nprimes as p' 'p.primes(100)'
1000 loops, best of 3: 44.2 usec per loop 30x speedup

nprimes.py

• JIT: just in time compilation of Python functions

• Compilation for both CPU and GPU hardware

Numba

• Easy, automatic parallelization

• Create your own optimised numpy 'ufuncs'

from numba import vectorize, float32

@vectorize('float32(float32, float32)'], target='parallel')
def sum(a, b):

return a + b

@vectorize('float32(float32, float32)'], target='gpu')
def sum(a, b):

return a + b

from numba import vectorize

@jit(parallel=True)
def sum(a, b):

return a + b

Mixing Python and C – fast and flexible

Cython is used for compiling Python-like code to machine-code
• supports a big subset of the Python language
• conditions and loops run 2-8x faster, overall 30% faster for plain Python

code
• add types for speedups (hundreds of times)
• easily use native libraries (C/C++/Fortran) directly

• Cython code is turned into C code
• uses the CPython API and runtime

• Coding in Cython is like coding in Python and C at the same time!

Some material borrowed from Dag Sverre Seljebotn (University of Oslo) EuroSciPy 2010 presentation

Cython

Use cases:

• Performance-critical code
• which does not translate to array-based approach (numpy / pytables)
• existing Python code à optimise critical parts

• Wrapping existing C/C++ libraries
• particularly higher-level Pythonised wrapper
• for one-to-one wrapping other tools might be better suited

Cython

Cython code must be compiled (but this can be automated)

Two stages:

• A .pyx file is compiled by Cython to a .c file, containing the code of a
Python extension module

• The .c file is compiled by a C compiler
• Generated C code can be built without Cython installed
• Cython is a developer dependency, not a build-time dependency
• The result is a .so file (or .pyd on Windows) which can be imported

directly into a Python session

Cython

Ways of building Cython code:

• Run cython command-line utility and compile the resulting C file
• use favourite build tool
• for cross-system operation you need to query Python for the C build

options to use

• Use pyximport to importing Cython .pyx files as if they were .py files;
building on the fly (recommended to start).
• things get complicated if you must link to native libraries
• larger projects tend to need a build phase anyway

• Write a distutils setup.py
• standard way of distributing, building and installing Python modules

Cython

• Cython supports most of normal Python

• Most standard Python code can be used directly with Cython
• typical speedups of (very roughly) a factor of two
• should not ever slow down code – safe to try
• name file .pyx or use pyimport = True

>>> import pyximport

>>> pyximport.install()

>>> import mypyxmodule # converts and compiles on the fly

>>> pyximport.install(pyimport=True)

>>> import mypymodule # converts and compiles on the fly
should fall back to Python if fails

Cython

• Big speedup from defining types of key variables

• Use native C-types (int, double, char *, etc.)

• Use Python C-types (Py_int_t, Py_float_t, etc.)

• Use cdef to declare variable types

• Also use cdef to declare C-only functions (with return type)
• can also use cpdef to declare functions which are automatically treated

as C or Python depending on usage

• Don't forget function arguments (but note cdef not used here)

Cython – primes example

• Efficient algorithm to find first N prime numbers

def primes(kmax):
p = []
k = 0
n = 2
while k < kmax:

i = 0
while i < k and n % p[i] != 0:

i = i + 1
if i == k:

k = k + 1
p.append(n)

n = n + 1
return p

$ python -m timeit -s 'import primes as p' 'p.primes(100)'
1000 loops, best of 3: 1.35 msec per loop

primes.py

Cython – primes example

$ python -m timeit -s 'import pyximport;
pyximport.install(); import cprimes as p' 'p.primes(100)'

1000 loops, best of 3: 731 usec per loop 1.8x speedup

def primes(kmax):
p = []
k = 0
n = 2
while k < kmax:

i = 0
while i < k and n % p[i] != 0:

i = i + 1
if i == k:

k = k + 1
p.append(n)

n = n + 1
return p

cprimes.pyx

Cython – primes example

def primes(int kmax): # declare types of parameters
cdef int n, k, i # declare types of variables
cdef int p[1000] # including arrays
result = [] # can still use normal Python types
if kmax > 1000: # in this case need to hardcode limit

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while i < k and n % p[i] != 0:

i = i + 1
if i == k:

p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result # return Python object

xprimes.pyx

40.8 usec per loop

33x speedup

contains only C-code

Cython and Numpy

• Cython provides a way to quickly access Numpy arrays with specified
types and dimensionality

à for implementing fast specific algorithms

• Can be useful, but often using functions provided by numpy, scipy,
numexpr or pytables will be easier and faster

Graphical interfaces

GUIs

• Give your scientific code a friendly face!
• easy configuration
• monitor progress
• particularly for public code, cloud computing, HPC

• Many modules to construct GUIs in Python…

• Tkinter – built-in

• Qt – C++

• wx – C++

• Remi – browser based

• PySimpleGUI – one interface, multiple GUI frameworls

• Kivy – modern and cross-platform

GUIs

Example using wxpython

www.wxpython.org

https://github.com/bamford/control/

http://www.wxpython.org/
https://github.com/bamford/control/

GUIs

For simple GUI, especially if output is a plot…

matplotlib widgets are very useful

• layout controls on a figure canvas

• functionality implemented using callback functions:

• every time a control is activated it will call the function

• function then examines the event and takes action

In Jupyter notebooks…

IPython widgets provide a quick graphical interface

Python web frameworks

Most popular…

Flask

light and flexible, more explicit, good for smaller projects

Django

full-featured, automated, good for getting big projects going quickly

but also…

Pyramid, web2py, …

• An (unscientific) example

http://writing.galaxyzoo.org/

The End

An introduction to scientific programming with

